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New Methods for Filbert Objective Yield Estimation

By William H. Wigton and William E. Kibler

Filbert estimating techniques can be improved by using refined procedures for selecting sample limbs
and counting nut clusters. These procedures can reduce survey cost 25 percent and improve sampling
and nonsampling errors. Counting nut clusters for two terminal limbs (4 percent of an average tree)
by stripping them from limbs reduced counting errors considerably, compared with on-the-limb counts
for primary limbs (15 percent of an average tree). The total cross-sectional area of primary limbs is
inexpensive to obtain and can be used efficiently in a double sampling survey design.
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Filbert production estimates for Washington and
Oregon were made from 1955 to 1964 using both
objective yield procedures’ and data reported by
growers (3).2 The objective estimates were discontinued
for economic reasons until 1968, when the demand for
more complete and accurate information on quality and
quantity of the crop increased. This paper discusses
some work that has been done to increase the accuracy
of objective yield estimates by improving (1) the
definition of sampling units, (2) sample allocation, (3)
estimating procedures, and (4) field counting proce-
dures. The work described has applications for other
fruit and nut crops where objective yield procedures
have been or are being considered.

Sample Selection

Six Afilbert blocks (orchards) were used in the study.
Rough sketches of the blocks were made with each tree
represented by a square on graph paper. The sketches
also indicated (1) the number of rows of trees in the
block, (2) approximate number of trees in each row, (3)
approximate number of trees for the entire block, and
(4) location of the blocks in relation to barns, fields,
houses, and roads bordering the blocks (figure 1).

A systematic sample of three or four rows and eight

! Estimation procedures based on actual plant or fruit charac-
teristics measured or counted from randomly selected plots or
limbs,

2Italic numbers in parentheses indicate items in the Refer-
ences, p. 46.

or nine trees in each row was selected in each block for
the total study, using random starts. This assured a
uniform distribution of sample trees throughout the
block as shown in figure 1. The trunk and primary limb?
measurements (cross-sectional areas or CSA’s) of these
trees were measured by using a special tape which is read
directly in square inches.

Previous work (1) on other tree crops indicates that
the sum of the primary CSA’s for a given tree is more
highly correlated with total yield than the one measure-
ment of trunk CSA. Therefore, the sample trees were
arrayed by the sums of the CSA’s of their primary limbs.
A subsample of three trees was systematically selected
from this array as shown in table 1. Detailed counts and
measurements were made for these three trees. The
subsampled trees were flagged with engineering tape and
photographed from two opposite sides during dormancy.
A stereo camera was used so the three-dimensional effect
could be used to identify limbs. The stereo slides were
used to partition the trees into sampling units, first by
identifying the primary limbs. Two randomly selected
primaries per tree were further subdivided into terminal
limbs.* All sample units (terminal limbs) were identified
on photographs. Two terminals from each primary were
chosen as sample units for making counts of nut clusters.
Individual nuts cannot be identified until nuts are
mature and hulls open so the individual nuts drop out. A
cluster generally contains about four nuts but can have
as few as one or as many as eight nuts.

3 Primary limbs or scaffolds are major limb divisions emerging
from the main trunk (figure 2).

* Small limbs emerging from the primary limbs used as sample
units for counting nuts (figure 2).
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ORCHARD SKETCH SHOWING SAMPLE TREES WITHIN BLOCK:
ABOUT 475 TREES IN BLOCK OF 18 ROWS, 28 TREES PER ROW

18 XXXXXXXXXXXXXXXXXXXXXXXX X\
17 XXXXXXXXXXXXXXXXXXX XXXXXXXX
16 XXXXXXXXXXXXXXXXXXXXXXXX XXX
15 Kx XEX XKxXx XKX XXX XXX X[@]x XX x xX X
14 XXXXXXX XXXXXXXXX XXXXXXXXX
13 XXXXXXXXX XXXXX XXXXXXXXXXX
12 XXXXXXXXX XXXXXXXXXXXXXX XXX
NUMBER 1 X XXXXXXXXXXXXXXXXX XXXXXXXX
OF 10 XXXXXXXXXX XXXXXXXXXXXXXXXXX
9 XXXXXXXX[X]XX[X]XX[X]XXXX[X]XX X
ROWS 8 XXXXX XXXXXXXX XXXXXXXXXXX
7 XXXXXXXXXXXXXXXXXXXXXXXXXXX
6 XXXXXXXXXXXXXXXXXXXXXXX XXXX
5 XXXXXXXX XXXXXXXXXXXXXXXXXXX
4 XXXXXXXXXXXX XXXXXXXXXXXXXXX
3 XE X XXX XXX X X x X[@®]x xXx XXX XX X
2 XXXXXXXXXXXXXXX XXXXXXX XXX
1 XXXXXX XXXXXXXXXXXXXXXXXXXX
12345678 910111213141516171819202122232425262728
NUMBER OF TREES
X] SAMPLE TREES USED FOR PRIMARY CSA MEASUREMENTS
SUBSAMPLE OF TREES USED FOR MAKING CLUSTER COUNTS ON
TERMINAL LIMBS
Figure 1
Table 1.--Sum of primary cross-sectional arcas for sample trees Field Procedures for Counting Clusters
shown in figure 1 arrayed with subsampled trees identified
S ; . : Inn August, the selected trees were located again and
Row and tree pri,;l:rr;:‘q}\»s Row and tree prin::rr;gSA’s all the primary limbs, identified on the photographs,
Square inches Souare inches were measired. Additional restrictions were placed on
Row 0 T IK,A ‘)34 ) Row 3 T ]5q 810 the size of the “primary limb” to help control variabil-
Rgx 15 T:z: 5 89.7 Rg:: 3 F:g: 21 80.4 ity. Its CSA could not be more than one-fourth of the
Row 3 Tree 24 88.2 Row 15 Tree 11 78.9 sum of the CSA’s of all primary limbs and it had to have
ﬁgx 13 ;f,:z:’ 22 a(g(;"a :ﬁgx 3 :lr::: 22 ;g;‘: at least two terminal Iimbs‘s. (')ne or more prjrr}ary' limbs
Row 3 Tree 6 857 Row 15 Tree 26 776 on most trees were not within this range. If limbs were
Row 3 Tree 27 84.9 Row 15 Tree 8 76.2 too large, they were divided into two or more primary
}ég: ]g ,}:"::: 1;‘); g;g gg:‘v g %r-:: 1?21 a;g? l?mbs. Primary ]in?bs witl.mut two ac(tvp?alnlc terminal
Row 9 Tree 15 826 Row 15 Tree 23 74.5 limbs were combined with another primary so the
Row 15 Tree 14 82.2 Row 9 Tree 9 728 combination was within the defined range. This required
Row 15 Tree 17 JLe Row 9 Tree 28 70.1 a new selection of primary sample limbs and a partition-
Row 9 Tree 6 8r.a Row 9 Tree2l 678 ing of them into terminal limbs in the field. The CSA’s

ASubsample of trees for making cluster counts on terminals.
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of all terminal limbs on the selected primaries were



TRUNK AND LIMB STRUCTURE FOR A TYPICAL FRUIT OR NUT TREE

Terminal Limbs
Path Units (nuts from
each assigned to the

v next terminal limb)

Limb too small to
/ qualify as terminal
\ Path units (nuts from

each assigned to the
next terminal limb)

Primary Limh

Large limb subdivided

at fork to make acceptable
primaries . .
\/ Small limbs combined

to make one acceptahle
primary

v

Primary Limbs

Trunk and Primary Limbs

Figure 2



recorded. However, actual sclections were made with
equal probabilitics. Any small limbs on a selected
primary which had a CSA less than 0.8 square inch were
treated as “‘path units” and the clusters were assigned to
the closest terminal.

The nut clusters on the selected limbs were counted
by two men. Sample limbs were assigned at random to
the two counters. One counter used the method of
partitioning the limb and counting by sections. A second
man counted the nuts by starting at the base of the
sample limb, counting outward, and recording one on a
hand counter after each 15th cluster. After each
completed his counts, they changed primary limbs and
picked every cluster from one of the terminal limbs. This
provided a quality check for the two counting proce-
dures. The nut clusters were put in plastic bags,
identified by block, tree, and limb, and sent to the State
laboratory. Here the clusters were divided so individual
nuts could be counted. The time required to complete
cach phase of the field work was recorded.

Estimating Models Evaluated

Twao different types of models were considered in
addition to the simple unbiased (direct expansion)
estimate. In general, both the regression and ratio
estitators use a double sampling approach. For a double
sampling design to be effective, the related characteristic
(auxiliary variable) must be highly correlated with the
value being estimated and relatively inexpensive to
obtain (compared with the variable under study). The
double sampling designs were evaluated on two levels:
(1) To estimate the number of nut clusters in a tree, and
2) to estimate the number of nut clusters on a primary.
At each level, two possible covariates were studied—sum
of primary CSA’s and trunk CSA at the block level, and
primary and terminal CSA’s at the tree level.

Block Estimating Model—Regression
The model for the regression estimator is:
V=¥ + 0 (Xy- Xy
where

Y! is the new estimate of nut clusters per tree for ith

block

-

is the average number of nut clusters estimated
per tree based on the three trees subsampled in

the ith block

b is the slope of the regression line of Yij’ the total
number of nut clusters on the same tree, on X,
the sum of primary limb CSA’s (or trunk CSA)
on the jth tree in the ith block

X, is the average CSA of all primary limbs (summed)
for the subsample of trees for which nut cluster
counts were made

Xy is the average CSA for all primary limbs
(summed) for the large sample of trees.

The associated variance function is:
Within-block variance =

2.2 2(1-,2 2 Q2
St ('r )+St a- )+§P_+Lﬁ,
n n nm nmt
R N
between-tree
variance

S
within-tree
variance

where
St2 = variance component between trees

sz = variance component between numbers of nut
clusters on primary limbs within trees

Szte, = variance component between numbers of nut
clusters on terminal units within primary
limhs

r2 = coefficient of determination betwcen total
nut clusters and the covariate measure; i.e.,
trunk CSA or sum of primary limb C5A°’s

n = number of trees for which CSA measurements
were obtained

n =number of trees in the subsample selected for
objective counts

m = number of primaries sclected per tree

t = number of terminal sample units selected per

primary limb.

The amount of actual gain in terms of reduced
variance for this model depends on (1) the degree of
correlation between total nut clusters on a tree and tree
size, (2) the magnitude of the between-tree nut count
variance compared with the magnitude of the within-tree



nut count variance, and (3) the number of observations
for the large and small samples. The estimate of the
regression slope b is better if the sclected trees vary
considerably in size (such as sum of primary CSA’ 5)
This is because the variance of b is S, 2/%x2 where S’

the mum square deviation from regression. The larver
the , the smaller the variance of . Thus, trees for
the delad study were selected systematically from a list
of trees arrayed by sizes (sum of primary CSA’s).

The first step in testing the suitability of a regression
model is to dctermine whether tree data from different
blocks can be pooled. A sequential test procedure,
starting with the most complex model and proceeding to
the least complex model, was used.

This procedure is an analysis of variance (AOV)
which tests a sequence of hypotheses about the suitabil-
ity of combining data from different blocks in com-
puting the regression coefficients. The following se-
quence of hypotheses is terminated with the first
significant F value.

(1) Can an average within-block slope be used for all
pooled data, or is a different dope and intercept
necessary for each block (figure 3)?

HOZ Y!] = a; + le]
H,: }l] it bX

(2) Can one intercept (or mean) and slope be used or
should a common slope, but separate intercept, be used
for each block (figure 4)?

HOZ ?l] =at le]

H,: Y,] aj + bX
(3) Is a regression equation useful or would the
mean, Y, be appropriate; ie., is b = 0 (figure 5)7

H:v

o 1~ Yi

Hy ¥ii=atbXy

]

The basic estimating model is established by answer-
ing these questions,

The top part of table 2 is a standard AOV table for
the estimated number of cluster counts. This top section
shows the partitioned sums of squares used to compute
the correlation coefficient. In testing the sequence of
hypotheses, one staris at the bottom of table 1 and
works up. The first Fvalue (1.52) is not significant;
thus, H,;: ff,] = a;+ inj is not rejected and the next test
is considered. The second F-value is significant; there-

Figure 3

7
Figure 4
Figure 5

fore, H;: Y
data.

An average within-block slope may be used for the
trunk CSA’s for all blocks. This slope predicts (Y ) for a
unit change in the trunk CSA (X]) The regressnon
model (Y = a; + bX; i) is changed to the double
sampling model (Y Y + b (X,l - ,s) (2) by observing
that a; = Y bX , where Xl is the large sample value
for the covariate and X, is the value for the small sample.

Similar results were obtained using the sum of the
primary CSA’s rather than the trunk CSA as the
independent variable. Again, the first F-value (0.52) is
not significant. The null hypothesis (Y a; + bXjj) is
accepted and the next test is considered. The n(xt F
value (15.48) is highly significant and the testing stops.
The model for grouping these data is Y,J =a; *+ bXy, the
same as for the trunk CSA.

After establishing the model for combining the data,
correlation coefficients were computed. The within-
block correlations were computed by adding the sums of
squares adjusted for the block means, and using these
values to figure the correlation in the usual manner;
ie.:

a; + inj is the model indicated by the
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Table 2.--Analysis of variance testing various hypotheses about the suitability of regression lines 2

Source Degrees Sums M
of of of can F-test Hypothesis
variation freedom squares Square
Between blocks .. ............... 5 17,829,392 3,565,878 ©8.62 Hy: Y; - Vi =0
Withinblocks .................. 12 4,962,781 413,565 --.-. Hy: Yi- Y %0
Total correcled sums of squares . . 17 22,792,174 ... ...
Regression{a, b) ................ 1 1,566,472 1,566,472 ----- Hy: 15=7
Error 1 ... .. ... . . 16 21,225,701 1,326,606 ----. Hg: Yii=a+ bX;
Regression (a. . .ag, b) .. ......... 5 16,948,263 3,389,653 98.72 Hy: ZIJ =a+ bX;
Eeror2 ... ... .. ... .. 11 4,277,438 388,858 ----- Hy: ¥lj =a;+ bX,]
Regression (a. . .ag, by. . .bg) - ... 5 2,391,979 478,396 152 Hp ¥;i=ai+bXj
EIFOr3 oo 6 1,885,459 314,243 ..... Hy: V= aj +biX;j
8X = trunk cross-sectional area, Y = estimated total of nut clusters.
bIndicates significance at 1 percent level.
Table 3.—Analysis of variance on the regression equations #
Source Degrees Sums M
of of of can F-test Hypothesis
. Square
variation freedom | squares
Betweengroups . ... ... 5 383,028 76,605 701 Hy: Y;i-Y¥=0
Withingroups .................. 30 327,732 10,924 ... .. H: Y, - Y, 40
Total corrected sums of squares . . 35 710,760 20,307  --.-.
Regression (@, b) .. ..ooovovunn.. 1 63,747 63,747  ----. Hy: Y=Y
Ereror1 ... .o il 34 647,013 19,030  --.-. Hy: Y=a+bX
Regression (a. . .ag, b) . .......... 5 431,619 86,324 Y1162 Hy: Yi=a+bX
Ercor2 ... .. . 29 215,394 7427 ... Hy: Y, =0;+bX
Regression (a|. . .ag, by. . .bg) ... .. 5 30,794 6.159 80 Hy Yi=a;+bX
Brror 3 .. oo 24 184,000 7,692 ... Hy: ¥;=a;+ biX

aX = cross-sectional area of the primary scaffold, Y = estimated total nut clusters on the primary scaffold

within trees.
bindicates significance at 1 percent level.

!szvlz
vV (ZZx<) (ZZy<)

The correlation coefficient for the sum of CSA’s for

r =

primary limbs with estimated total nut clusters was
highly significant (r = 0.95). However, the correlation
for trunk CSA with Lotal nut clusters was not significant-
ly different from zero at the 0.05 level.

Further study was done on the cost of obtaining
these measurements in terms of time required for (1)
walking from one tree to another, and (2) making the
various measurements at the tree. Time required to go
from one tree to another would be the same for either
variable (trunk CSA or sum of primary CSA’s). The time
required at the tree for obtlaining (1) the sum of the
primary CSA™s was about 3 minutes, and (2) the trunk
CSA was about 1 minute. Thus, the time required for

42

both measurements was 4 minutes per tree for one
person. These measurements need not be redone each
vear and could be used for about 4 years.

Tree Estimating Models—Regression and Ratio

To determine whether a ratio rather than a regression
estimator should be used, one must satis{ly the double
requirements that (1) the correlations must be signifi-
cant; i.e., r generally greater than 1/2 (S,/X )/(S,/Y) and

2 - X2 V(1/X
(2) the ratio ofb— (—l——Dmust be greater thanL (‘ X)
a2 n S 2
x

(4) (¢ and b are the parameters of the regression equation
and V' (1/X) is the variance of the harmonic mean).

If the correlation is large enough, then the second
criterion must be met. It is less binding since the



Y-intercept a can frequently be reduced by a simple
transformation. For example, if the correlation is high
and the slope b is large, but the intercept is also large
(figure 6), a simple transformation of the X-variable can
reduce the Y-intercept to zero (figure 7).

The regression estimator is not restricted by the value
of a single Y intercept if a within-block model is used. A
single translation of the regression as shown in figures 6
and 7 would be impossible if a new intercept were
required for each block.

Figure 6

Tree Pstimating Model Using Primary Limbs

The sive of the primary limbs could range from about
2.0 up to about 20.0 square inches, insuring a wide range
of sizes in the sample.

To evaluate which estimation procedure is more
efficient for primary limbs, r was compared with 1/2
(gx/\)/(sy/}’) To compute the correlation coefficient,
il was necessary 1o determine how the data should be
combined. Table 3 shows the tests for combining
within-tree data. The model testing procedures for this
analysis were the same as those described previously for
trees.

The model for utilizing primary limb data from the

different blocks was found to be ¥;; = a; + X5, where b
within Llock slope for all data and &

P tbres caveerrspzyer

G

diffecent intercept a; for each ith block must be

computed. if; is total clusters on jth primary limb in ith
block and Xij is sizc of the jth primary in the ith block.

The correlation coefficient (assuming one average
slope) can be computed from the values in table 4 by
dividing the regression sum of squares by the within-
group sum of squares and taking the square root of the
quotient. The correlation coeflicient is slightly larger
than 1/2 (S, / X)/ Sy / Y). This relationship is based
on an approximation of the mean square error of the
classical ratio estimate. The inequality is approximate
and if the correlation is high and the slope large (as for
this case) the size information may still be helpful. The
correlation computed was between Xj; (the size of the
jth primary in the ith block) and the };} (estimated
number of clusters on the same limb).

The second inequality necessary for the ratio esti-
mator to Dbe cfficient involves the slope and the
intercepts:

b2 (1-f) _ X2V (1/X)
P

5,2

or,
b25x2(1"f) 2
nX2 v xy ~°

Inserting the computed values for the variables, we
conclude that a must be less than 64. The intercepts
computed for the six blocks were: ay =42, a9 = 125, a3
=-7,a4 =111, a5 = 327, ag = 12. In three blocks (a9,
a4, and ag) the ratio estimator would have been more
efficient and in the other three (a], ag and ag), the ratio
estimator would be less efficient than the simple direct
expansion. Furthermore, the intercept could not be
changed by a single linear transformation because the
intercepts varied so widely (-7 to 327). For this reason,
a within-block regression estimator is better using the
following model:

Vi= Y+ b Xy~ Xig) = ¥ + 60Xy~ 60X

where ?i - byis is the block intercept a;, )'}i is the
double sampling estimate of the number of total clusters
per tree in the ith block, 7:‘ is the average of the direct
expansion estimates for trees in the ith block, b is the
overall regression coefficient, X, is the average primary
size for the block, and Xj is the average size of the
primaries sampled.

Since the coefficient of determination is 0.34 and the
stope s significant, use of the primary himb size data
should reduce the primary variance component by about
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Table 4. —Within-block sums of squares used to compute
correlation coefficient

Source of variation Sum of squares

Withingroupsof Y .. .............. 327,732
Error2 ..., 215,394
Regression (assumingone b) ........ 112,338

2= ;——-l-;g 332 =0343 r=/0343=0586 (S, /X)=0.608

(Sy/ ¥)=0.521 and 1/2 (S, /X)/(Sy/ ¥)=0.583

one-third, Data on more blocks would help evaluate the
reduction achieved by using CSA’s of primary limbs in
the estimation process.

Terminal Limbs Within Primary Limbs

The primary sample units (SU’s) were subdivided into
terminal SU’s, This unit was defined as any limb with a
CSA between 0.8 and 2.5 square inches. The average
terminal SU had 50 nut clusters and took approximately
13 minutes to count. Two estimation schemes were
studied: Lqual probability selection with expansion by
reciprocal of probability, and expansion using terminal
size as an auxiliary variable in a ratio or regression
estimate.

To determine. which method of estimation was more
efficient the same test discussed earlier was used. The
Fovalue (15.46) for the second test was significant. The
model using one average slope with a different intercept
is also the best model for combining data for the
terininal limb sample stage. For this analysis, r = 0.20,
which is less than 1/2 (S,/x) /(Sy/y) = 0.34. Thus, the
first criterion necessary for size to be used in the
estimation procedure using a ratio estimator is not met.
Neither the ratio nor the regression estimation scheme,
which uses the terminal size, would reduce the variance
because of the very low correlation. Therefore, if the
terminal SU’s are restricted in size from 0.8 to 2.5
square inches, then the simple unbiased estimator is
more efficient than estimators using limb sizes in the
eslimation process.

Optimum Number of Trees, Primary Limbs,
and Terminal Limbs

Two sample aliocations were optimized: (1) optimum
values for trees n, primaries within trees m, and
terminals within primaries ¢, and (2) the optimum ratio
of trees measured to trees counted.
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Both optimizations assumed that ali selections would
be with equal probability with variance components
estimated from sample data. The estimating model for
the average tree within the kth block is:

nop . Mpy ..o ot
EﬁE_Lkl z
m t _

=1 ™ =1 " w=l

Yk=

.

X =

Xkijw

where
injw = number of filbert clusters for the wth limb of
the jth primary on the ith tree in the kth
block

¢ = number of terminal sample units selected

Mkij = number of terminals on the jth primary in
the ith tree in the kth block

m = number of primary sample units selected

hy; = number of primary sample units on the ith
tree in the kth block

n = number of sample trees per block.

Its associated variance formula is:

Total variance =

%, 1, (Bom) (S22, (Tt (S 1er
k kn M kmn T/ \knmt

and the appropriate cost function is:

Total cost =
(k) Cp t (kn) C * (knm) Cp + (knmt) CTer

where
k = number of blocks in sample
523 = variance component between blocks
Cp = cost of going from block to block (or block
to home)
52T = variance component between trees
Cr = cost of going from tree to tree within a block

and breaking the tree into primary units



82p = variance component between primaries

Cp = cost of selecting one primary and breaking it
into terminal sample units

S2Te, = variance component between terminals with-
in primaries

CTer = cost of selecting and counting one terminal

M = average number of primaries on a tree = 5.89

T = average number of terminals on a primary =

5.

According to Snedecor and Cochran (5), the opti-
mum values for t, m, and n are:

/C, S21,, / C1S2p /Bsz
t= —E-—T; m= ;
CTer S%p Cp sz " CrS2g

The numerical values which were substituted are
found in table 5. The optimum values rounded to
integers are n = 3, m = 1, and t = 2. The next step is to
find the optimum ratio of trees measured to trees
counted. To optimize the ratio n’/n, again variance and
cost functions are necessary. For this, a within-block
function is needed and is as follows:

S%p , $°Ter

Within-block variance =
nm nmt

2,
S T,
n

This must be changed to include double sampling at the
tree level as follows:

Within-block sampling variance =

$2p(r?) | S2p(1-r?) |, 8% | 270

n' n nm nmt

Table 5.—Summary of costs and variance components for the
four stages of sampling

Cost .
. Variance
Sourece in
. component
minutes

Blocks . ........... 150 118,113 = 522,3
Trees .. ........... 18 115,519=8§ T
Primaries .. .. ...... 9 491,334 = s2
Terminal sample units 16 2554,293 = S<pq,

AAdjusted for average finite population correction factors.

Within-block double sampling cost =
n'Cp +nCp+nm Cp+nmt Cp,,

where C7” is cost of measuring a tree, 4 minutes per tree,
but could be used for 4 years so that an average of 1
minute per year was used, n' is the number of trees
selected at random to measure, and r2 is the coefficient
of determination between the estimated quantity (total
nut clusters) and the auxiliary variable (measure of tree
size). In this study, we have recommended the sum of
primaries as the covariate and assumed r2 = 0.7;
somewhat below the (.95 observed in the section on the
block estimating model.

The optimum ratio is found by forming the product
of the variance and cost functions, differentiating with
respect to n’ and n, solving for each and forming the
ratio.

The ratio before substitution is:

SZT(rz) (C1+mCp+mtCpqp)

S2 +52
CT’<32 (1- r2)+ P Ter)

i

2=

mt

Using the variance components from table 5, and the
cost values from above, n, m, and t as given indicate a
ratio for n'/n of 3.2. Since three trees per block should
be selected for counts, 10.2 is the optimum real number
of trees which should be measured for the double
sample, Operationally, 12 trees should be selected for
measurements because 12 is a multiple of three and a
rotation system for selecting the subsample for detailed
counts and measurements could be worked out.

Selecting Trees, Primary Limbs,
and Terminal Limbs

A sample of 12 trees should be selected at random for
cach block for obtaining the sum of primary limb CSA
measurements for all primaries on each tree. These sums
should be arrayed and a subsample of three trees
systematically selected for identifying terminal limbs
and making detailled cluster counts. The regression
estimation technique should be used to adjust the
estimated number of clusters for the subsample of trees
for differences in tree size compared to the large sample
of 12 trees.

For each of the three subsample trees one primary
limb should be selected using equal probabilities (see
figure 2). The selected primary limbs should be subdi-
vided into terminal limbs and two of these sclected for
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making counts of nut clusters. Counts should be made
by stripping all clusters from the sample terminals (sce
following scction). This eliminates the need for a quality
check on counts made. The number of clusters for the
sample trees can then be estimated using a regression
tmodel where the direct expansion estimate for clusters
(i.e., number of terminal limbs times nut clusters
counted times number of primary limbs for tree) is
adjusted for differences in the size of the sample primary
and the average size for all primaries on the tree.

Errors in Counting

Information from quality checks from current survey
procedures shows that the number of clusters on sample
limbs has been undercounted. Data on counting ac-
curacy were obtained for each person counting by
having the supervisor strip all clusters from a subsample
of terminal limbs which had first been counted with the
usual on-tree counting procedure.

When the number of nut clusters missed (strip counts
minus on tree cluster counts) is plotted against strip
counts, the graphs indicate that a proportional relation-
ship exists. The fitted line has a positive slope and goes
approximately through the origin. This indicates that a
factor could be applied to a limb count to adjust for
undercounting. However, since the optimum terminal
SU size is very small (CSA between 0.8 and 2.5 square
inches), or generally between 1.7 and 2.0 percent of the
tree, clusters for the entire limb can be stripped and
counted. This eliminates some quality check work as
most undercounts are usually associated with overlook-
ing ¢lusters partially hidden by leaves. Stripping elimi-
nates most of this problem since counts are not made
until the entire limb has been stripped and rechecked to
see that no clusters were overlooked. Checks made to
evaluate the accuracy of stripping found about 3 percent
of the clusters not stripped. This compares with an
undercounting of about 8 percent for prior methods.

Operational Survey

The first operational survey using the sampling
techniques  developed was completed in 1971, This
survey required a sample of about 150 blocks, compared
with 350 required when using the previous technique of
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selecting a primary and counting all the nut clusters on it
(about one-seventh of a tree). The derived sampling error
from the new sample procedure was about 5 percent, |
percent below the previous level, even though the
number of blocks visited was reduced by 200. The new
sampling procedure reduced survey costs by about 25
percent,

Summary and Conclusions

The sum of primary CSA’s (1) is highly correlated
with the estimated number of nut clusters per tree, (2) is
inexpensive to obtain, and (3) can be used efficiently in
a double sampling survey design. Primary limbs should
be selected with equal probability and their size (CSA)
used in the estimation process. Terminal limbs with
CSA’s between 0.8 and 2.5 square inches, selected with
equal probabilities, should be used as sample units. The
optimum sample allocation within a block is three trees,
one primary limb per tree, and two terminal limbs per
primary.

All nut clusters on selected terminals should be
counted (stripped), picked and bagged. An independent
quality count survey should be made a few days
after the regular survey period to determine whether the
proper limb was stripped and any nut clusters were
missed. Bare tree photography for sample trees should
be used for selecting primary and terminal limbs, and for
the quality check survey.
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